晶振时钟频率偏移测试
基于UWB时钟模型,实验主要关注UWB模块相对系统参考时钟的归一化频率,测试在不同的发送时间间隔下归一化频率偏差随时间的变化关系,以及相邻时刻的归一化频率的差值变化和发送时间间隔的关系。
晶振时钟测试原理
基于在UWB系统时钟模型
中的推导,对UWB模块来说,包含晶振误差和天线延迟误差的总体时钟模型近似为:
其中$\alpha_f^M$为该模块相对系统参考时钟的归一化频率,其值的大小约等于1,而$\beta^M$则是该模块相对系统参考时钟的时间偏移量。
假定UWB时钟参考基站按一定的间隔大小连续发送blink数据包,记该时钟参考基站的blink的发送时间为:
\[t_0, t_1, t_2, \cdots\]而UWB模块M则不停接收来自该时钟参考基站的blink数据,记UWB模块M的对每一个blink的接收时间为:
\[t_0^M, t_1^M, t_2^M, \cdots\]根据UWB模块的时钟模型有如下关系:
\[t_k^M = \alpha_f^M t_k + \beta^M\]对UWB模块M两个相邻时刻i,j的数据进行相减,有:[相邻时刻意味着,$\alpha_f \simeq \alpha_f(t_i) \simeq \alpha_f(t_j), \beta \simeq \beta(t_i) \simeq \beta(t_j)$]
\[t_j^M - t_i^M = (\alpha_f^M t_j + \beta^M) - (\alpha_f^M t_i + \beta^M) \simeq \alpha_f^M (t_j - t_i)\]即在两个相邻时刻i,j间,UWB模块M的归一化频率可近似为,
\[\alpha_f^M \simeq \frac{t_j^M - t_i^M}{t_j - t_i}\]测试实验结果
实验中设置不同的时钟参考基站发送blink数据的时间间隔,分别为50ms,100ms,200ms,300ms,500ms,总计进行5次的数据分析。实验结果主要关注在UWB模块M相对时钟参考基站的归一化时钟频率$\alpha_f^M$随时间的变化特性,包括$\alpha_f^M$随时间变化曲线,以及相邻时刻$\alpha_f^M$的差值随时间变化的曲线。
-
blink时间间隔:50ms
-
blink时间间隔:100ms
-
blink时间间隔:200ms
-
blink时间间隔:300ms
-
blink时间间隔:500ms
从实验结果可以看出,在不同的blink数据发送时间间隔下,$\alpha_f^M$随时间的变化趋势是几乎一致的,而相邻时刻$\alpha_f^M$的差值波动则随blink数据发送时间间隔的增大而减小,这可归结为对$\alpha_f^M$的近似中,端点误差的影响被较大的间隔时间所平滑掉了,具体地说,由
\[\alpha_f^M \simeq \frac{t_j^M - t_i^M}{t_j - t_i}\]假定在端点时刻$t_i$,$t_j$时,$t_j^M$,$t_i^M$的接收误差分别为:$e_j$,$e_i$,该误差主要与UWB模块M本身的制造特性以及环境中其它无线信号的干扰有关,在整个实验过程中,可认为其噪声特性几乎稳定不变,并进一步假定其为高斯白噪声,即$e_j\sim\mathcal{N}(0, \sigma), e_i\sim\mathcal{N}(0, \sigma)$,有,
\[\begin{aligned} \alpha_f^M &\simeq \frac{t_j^M - t_i^M}{t_j - t_i} \\ &= \frac{t_j^M - e_j - t_i^M + e_i}{t_j - t_i} \\ &= \frac{t_j^M - t_i^M}{t_j - t_i} - \frac{e_j - e_i}{t_j - t_i} \\ \end{aligned}\]从而$\alpha_f^M$的误差为$\frac{e_j - e_i}{t_j - t_i}$,该误差均值和标准差分别为
\[\left\{ \begin{aligned} \mu &= \mu\left(\frac{e_j - e_i}{t_j - t_i}\right) = 0 \\ \sigma &= \sigma\left(\frac{e_j - e_i}{|t_j - t_i|}\right) = \frac{\sqrt{2}\sigma}{|t_j - t_i|} \\ \end{aligned} \right.\]由上述分析可得,相邻时刻$\alpha_f^M$的差值波动大小随blink数据发送时间间隔的增大而减小,验证了端点误差的影响被较大的间隔时间所平滑的猜想。
留下评论